Введение

 

Введение

Свет и световые явления люди начали изучать в глубокой древности. Такие известные философы как Пифагор (VI и. до н.э.), Аристотель (IV в. до н.э.), Евклид (III в. до н.э.) занимались изучением света. Евклид в своих трактатах обобщил ранее известные знания и изложил два закона геометрической оптики. Пифагор одним из первых выдвинул гипотезу о том, что тела испускают мельчайшие частицы, которые попадают в глаза, благодаря чему мы и видим окружаю­щий мир. Одну из первых гипотез о свете как возбуждении среды выдвинул древнегреческий ученый Аристотель. Форму теории о световых волнах эта гипотеза приобрела в трудах голландского ученого-физика X. Гюйгенса (1629-1688).  В древности представления о природе света были весьма примитивными, фантастическими и к тому же весьма разнообразными. Однако несмотря на разнообразие взглядов древних на природу света, уже в то время наметились три основных подхода к решению вопроса о природе света. Эти три подхода в дальнейшем оформились в две конкурирующие теории - корпускулярную и волновую теории света. Подавляющее большинство древних философов и ученых рассматривали свет как некие лучи, соединяющие светящееся тело и человеческий глаз.

При этом одни из них полагали, что лучи исходят из глаз человека и как бы ощупывают рассматриваемый предмет. Эта точка зрения имела очень большое число последователей. Даже такой крупнейший ученый как Евклид придерживался ее. Формулируя первый закон геометрической оптики, закон прямолинейного распространения света, Евклид писал: «Испускаемые глазами лучи распространяются по прямому пути». Такого же взгляда придерживался Птолемей и многие другие ученые и философы.

Однако позже, уже в Средние века, такое представление о природе света теряет свое значение. Все меньше становится ученых, следующих этим взглядам. И к началу XVII в. эту точку зрения можно считать уже забытой.

Другие, наоборот, считали, что лучи испускаются светящимся телом и достигая человеческого глаза, несут на себе отпечаток светящегося тела. Такой точки зрения придерживались атомисты Демокрит, Эпикур, Лукреций.

Последняя точка зрения на природу света уже позже, в XVII в., оформилась в корпускулярную теорию света, согласно которой свет есть поток каких-то частиц, испускаемых светящимся телом.

Третья точка зрения на природу света была высказана Аристотелем. Он рассматривал свет не как истечение чего-то от светящегося предмета в глаз и тем более не как некие лучи, исходящие из глаза и ощупывающие предмет, а как распространяющееся в пространстве (в среде) действие или движение

Мнение Аристотеля в его время мало кто разделял. Но в дальнейшем, опять же в XVII в., его точка зрения получила развитие и положила начало волновой теории света.

В XVII в. в связи с развитием оптики вопрос о природе света вызывает все больший и больший интерес. При этом происходит образование двух противоположных теорий света: корпускулярной и волновой.

Для развития корпускулярной теории света была более благоприятная почва. Действительно, для геометрической оптики представление о том, что свет есть поток особых частиц, было вполне естественным. Прямолинейное распространение света хорошо объяснялось с точки зрения этой теории. Также хорошо объяснялся и закон отражения света. Да и закон преломления не противоречил этой теории.

Общее представление о строении вещества также не вступало в противоречие с корпускулярной теорией света. В основе тогдашних представлений о строении вещества лежала атомистика. Все тела состоят из атомов. Между атомами существует пустое пространство. В частности, тогда считали, что межпланетное пространство является пустым. В нем и распространяется свет от небесных тел в виде потоков световых частиц. Поэтому вполне естественно, что в XVII в. было много физиков, которые придерживались корпускулярной теории света.

В XVII в., как  уже было сказано выше, начинает развиваться и представление о волновой природе света.

Родоначальником волновой теории света нужно считать Декарта. Декарт был противником существования пустого пространства. В связи с этим он не мог считать свет потоком световых частиц. Свет, по Декарту, это нечто вроде давления, передающегося через тонкую среду от светящегося тела во все стороны. Если тело нагрето и светится, то это значит, что его частицы нахо­дятся в движении и оказывают давление на частицы той среды, которая за­полняет все пространство. Эта среда получила название эфира. Давление распространяется во все стороны и, доходя до глаза, вызывает в нем ощущение света.

Такова точка зрения Декарта на природу света. Нужно только отметить, что в своем сочинении, посвященном специально оптике, Декарт пользуется и корпускулярной гипотезой. Но это, как он сам говорит, сделано для того, чтобы его рассуждения были более понятны. Поэтому не правы те, кто на основе только этого сочинения зачисляет Декарта в сторонники корпускулярной теории света. Ученые XVII и XVIII вв. это хорошо понимали и считали Декарта родоначальником волновой теории света.

Конечно, у Декарта нет еще представления о световых волнах. Он представляет себе свет как распространяющееся движение, или импульс в эфире. Но не это важно. Важным является то, что Декарт рассматривает свет уже не как поток частиц, а как распространение давления, или движение импульса и т. п.

Декарт пришел к отказу от корпускулярной теории света чисто умозрительным путем. Никаких опытных данных, которые говорили бы за волновую теорию света, тогда еще не было. Первое открытие, свидетельствующее о волновой природе света, было сделано итальянским ученым Франческо Гримальди (1618-1663). Оно было опубликовано в 1665 г. после смерти ученого.

Гримальди заметил, что если на пути узкого пучка световых лучей поставить предмет, то на экране, поставленном сзади, не получается резкой тени. Края тени размыты, кроме того, вдоль тени появляются цветные полосы. Открытое явление Гримальди назвал дифракцией, но объяснить его правильно не сумел.

Вторым важным открытием, относящимся к физической оптике, было открытие интерференции света. Простой опыт по интерференции света наблюдал Гримальди. Опыт заключается в следующем: на пути солнечных лучей ставят экран с двумя близкими отверстиями (проделанными в ставне, закрывающей окно); получаются два конуса световых лучей. Помещая экран в том месте, где эти конусы накладываются друг на друга, замечают что в некоторых местах освещенность экрана меньше, чем если бы его освещал только один световой конус. Из этого опыта Гримальди сделал вывод, что прибавление света к свету не всегда увеличивает освещенность.

Другой случай интерференции примерно в те же годы исследовал английский физик Роберт Гук (1635-1703). Он изучал цвета мыльных пленок и тонких пластинок из слюды. При этом он обнаружил, что эти цвета завися от толщины мыльной пленки или слюдяной пластинки.

Гук подошел к изучению этих явлений с правильной точки зрения. Он полагал, что свет - это колебательные движения, распространяющиеся эфире. Он даже считал, что эти колебания являются поперечными.

Явление интерференции света в тонких пленках Гук объяснял тем, что от верхней и нижней поверхности тонкой, например мыльной, пленки про исходит отражение световых волн, которые, попадая в глаз, производят ощущение различных цветов. Однако у Гука не было правильного представления о том, что такое цвет. Он не связывал цвет с частотой колебаний или с длиной волны, поэтому не смог разработать теорию интерференции.

Третье важное открытие, относящееся к волновой оптике, было сделано датским ученым Бартолином в 1669 г. Он открыл явление двойного луче­преломления в кристалле исландского шпата. Бартолин обнаружил, что если смотреть на какой-либо предмет через кристалл исландского шпата, то вид­но не одно, а два изображения, смещенных друг относительно друга. Это явление затем исследовал Гюйгенс и попытался дать ему объяснение с точки зрения волновой теории света.

Следующий шаг в развитии волновой теории света был сделан Гюйген­сом. Гюйгенс работал над волновой теорией света в 70-х гг. XVII в. В это время он написал «Трактат о свете», содержание которого доложил Париж­ской академии наук. Однако опубликовано это сочинение было позже, уже после того как стали известны работы Ньютона по оптике.

Гюйгенс полагал, что все мировое пространство заполнено тонкой не­ощутимой средой - эфиром, который состоит из очень маленьких упругих шариков. Эфир также заполняет пространство между атомами, образующи­ми обычные тела.

Распространение света, по Гюйгенсу, есть процесс передачи движения от шарика к шарику, подобно тому как распространяется импульс вдоль сталь­ных шаров, соприкасающихся друг с другом и вытянутых в одну линию.

Выдвинув такую гипотезу о свете, Гюйгенс посвятил основную часть своей работы объяснению известных законов оптики: закона прямолинейно­го распространения света, законов отражения и преломления.

Для того чтобы показать, что волновая теория способна объяснить прямолинейное распространение света, Гюйгенс выдвигает свой известный прин­цип. Вот формулировка этого принципа, данная самим Гюйгенсом.

"По поводу процесса образования этих волн следует еще отметить, что каждая частица вещества, в котором распространяется волна, должна сообщать свое движение не только ближайшей частице, лежащей на проведен­ной от светящейся точки прямой, но необходимо сообщает его также и всем другим частицам, которые касаются ее и препятствуют ее движению. Таким образом, вокруг каждой частицы должна образоваться волна, центром которой она является. Но каждая из этих волн чрезвычайно слаба, и световой эффект наблюдается только там, где проходит их огибающая."

Но для признания волновой теории света этого было мало. Явления дифракции и интерференции не были объяснены Гюйгенсом. Но главная неудача теории Гюйгенса заключалась в том, что она была теорией бесцветного цветa. Вопрос о цвете в ней не рассматривался, а к тому времени Ньютон сделал новое важное открытие в оптике - он обнаружил дисперсию света.

Первые оптические приборы и устройства также появились много столетий назад. Создавались они искусными умельцами, обладавшими не только умелыми руками, но и большой наблюдательностью. Первые линзы и телескопы были сделаны на основе расчетов и предшествующего опыта. Расчеты велись с помощью законов геометрической оптики: закона прямолинейного распространения света в однородной среде, законов отражения и преломления света, полученных опытным путем. При этом использовались понятия "световой пучок" и "световой луч". Были разработаны весьма изящные методы расчета оптических систем на основе понятий и законов. Эти методы сохранили свое значение и после того, как была выяснена волновая природа света.

При изучении курса вы познакомитесь с тем, как возникает явление природы - радуга, научитесь строить изображения в зеркалах и линзах.

Сайт создан по технологии «Конструктор e-Publish»
Hosted by uCoz